
 
 

Technical Report 10-001 
 
 
 
 
 

Modeling of Diffusion through a Network: A New 
Approach using Cellular Automata and Network 

Science Techniques 
 
 
 
2LT Steven Kinney, Elisha Peterson, Ph.D. 
 
 
U.S. Military Academy, West Point NY 
 
 
 
 
 
 
 
 
 
 
 
May 2010 

 
 

    
      United States Military Academy                 
                           Network Science Center 

 
 
 
 
 
            
 
 

Approved for public release; distribution is unlimited.  



u.s. Military Academy 
Network Science Center 

A~~d and approved for distrib~ ~ L 
OL ~ H GINS, Ph.D. LTC JOAN GRAHAM, Ph.D. 

Director of Re earch Director 

Technical review by 

8G(R) Christopher Arney, Ph.D. , Department of Mathematical Sciences, U.S. Military 
Academy 

LTC Donovan Phillips, PhD. , Department of Mathematical Sciences, U.S. Military 
Academy 

NOTICES 

DISTRIBUTION: Primary distribution of this Technical Report has been made by the 
U.S. Military Academy Network Science Center. Please address correspondence 
concerning distribution of reports to : Network Science Center, U.S. Military Academy, 
646 Swift Road , West Point, NY 10996 

FINAL DISPOSITION: This Technical Report may be destroyed when it is no longer 
needed. Please do not return it to the U.S. Military Academy Network Science Center. 

NOTE: The findings in this Technical Report are not to be construed as an official 
Department of the Army position , unless so designated by other authorized documents 

III 



 
 

 iv 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

4 May 2010 
1. REPORT DATE (DD-MM-YYYY) 

Technical Report 
2. REPORT TYPE 

 September 2009 – May 2010 
3. DATES COVERED (From - To) 

 
4. TITLE AND SUBTITLE 

 
 
 
 
 
 
 

n/a 
5a. CONTRACT NUMBER 

Modeling of Diffusion through a Network: A New Approach using 
Cellular Automata and Network Science Techniques 

 
n/a 
5b. GRANT NUMBER 

 
n/a 
5c. PROGRAM ELEMENT NUMBER 

Steven Kinney, Elisha Peterson 
6. AUTHOR(S) 

 
 
 

ARO NetSci 02 
5d. PROJECT NUMBER 

 
 
 
 

n/a 
5e. TASK NUMBER 

 
 
 
 

n/a 
5f. WORK UNIT NUMBER 

 
 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

  

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

Network Science Center,  
U.S. Military Academy 
601 Cullum Road, Thayer Hall Room 119 

 
West Point, NY 10996 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

n/a 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 USMA NSC 

U.S.Army Research Organization 
Triangle Park, NC 

 
11. SPONSOR/MONITOR’S REPORT  

 
      NUMBER(S) 10-001 

  

 
12. DISTRIBUTION / AVAILABILITY STATEMENT 

Unlimited Distribution 
 
 

The views expressed in this thesis are those of the authors and do not reflect the official policy or position of the Department of Defense or 
the U.S. Government. 

13. SUPPLEMENTARY NOTES 

 This paper investigates the sensitivity of current models that describe diffusion or the spread of infection to changes 
in topology and/or initial conditions. We construct a computer simulation based on cellular automata that allows for 
customization of network and infection scenarios. Using the simulation we run several batch runs with varied circumstances 
to assess the impact of small changes in topology and initial conditions upon diffusion through a network. We also build 
Excel models to predict long term infection and spread rates, based upon insights from the computer-based cellular automata 
simulation. 

14. ABSTRACT 

 The goal is to highlight weaknesses in current models and present alternative models that may be more realistic. 
Using network science and computer science techniques, we present another option for modelers to use when forming their 
own spread and diffusion models. 
 

Social Network, Graph Theory, Cellular Automata, Disease Modeling, Network Diffusion 
15. SUBJECT TERMS 

 
16. SECURITY CLASSIFICATION OF: 17. LIMITATION  

OF ABSTRACT 
18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
Tish Torgerson 

UNCLASSIFIED 
a. REPORT 

UNCLASSIFIED 
b. ABSTRACT 

UNCLASSIFIED 
c. THIS PAGE UL 

 
41 

845-938-0804 

19b. TELEPHONE NUMBER (include area 
code) 

  Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 



 
 

 v 

 
Technical Report 10-001 
 
 
 

Modeling of Diffusion through a Network: A New 
Approach using Cellular Automata and Network 

Science Techniques 
 
 
 
 
 

2LT Steven Kinney, Elisha Peterson Ph.D. 
 
   

U.S. Military Academy, West Point NY 
 
 
 
 
 
 
 
 
 
 

U.S. Military Academy Network Science Center 
601 Cullum Road, Thayer Hall Room 119, West Point, NY 10996 

 
 

4 May 2010 
 
 

 
 
 

Approved for public release; distribution is unlimited.



 
 

vi 

ACKNOWLEDGEMENT 
 

The authors are grateful to the Department of Mathematical Sciences at USMA for its 
support during this project, in particular to Professor Chris Arney and LTC Donovan Phillips for 
providing valuable feedback on this project. 

 
  



 
 

vii 

MODELING OF DIFFUSION THROUGH A NETWORK: A NEW APPROACH USING 
CELLULAR AUTOMATA AND NETWORK SCIENCE TECHNIQUES 

 
 

EXECUTIVE SUMMARY 
 

 Scientists and mathematicians have been trying for centuries to correctly model behavior 
of groups of people.  Behavior can vary from something as simple as what happens if one 
member of the group leaves the group to something as complicated as the effect of a natural 
disaster on a group’s cohesion.  This paper focuses on the behavior associated with diffusion or 
spread throughout a group.  Exactly what is spreading throughout the group is not defined; it 
could be a disease or it could be a piece of information.  Currently there are several mathematical 
models that predict how diffusion through a group occurs.  Some have been used to predict 
infection rates in large populations; others have been used to pinpoint individuals that act as key 
information spreaders such as a local gossiper.  The goal of this paper is to offer an alternative 
method of modeling this diffusion and provide some insight into why this alternative might be 
more accurate. 

Procedure 
 Many of the current models of diffusion assume random mixing.  This would be 
equivalent to putting a drop of dye in a glass of water and stirring it.  The dye will diffuse 
throughout the entire glass through random movement of the water molecules.  Another large 
segment of these models assume a detailed knowledge of the underlying network connections.  
For instance an airline company might know exactly which cities had flights connecting them 
and so would have a detailed understanding of how people diffused around the globe by air.  
Neither of these two assumptions, random mixing and knowledge of network connections, is 
always valid.  Consider the example of the spread of a disease through a city.  To assume that 
any two individuals in the city have equal chance of spreading the disease as any other two 
individuals would be an incorrect assumption.  Certainly people that go to the same office, the 
same grocery store, or even live in the same house are more likely to spread disease than two 
people who do not share any such spaces.  To assume detailed knowledge of the network of 
interactions would also likely be an incorrect assumption.  Knowing who interacts with whom is 
possible in a small office or school class room, but for an entire city the possible number of 
connections grows too large. 

Findings 
 The tool presented in this paper uses a cellular automata (CA) based model to avoid both 
invalid assumptions.  Instead of assuming random mixing, the CA model assumes random 
connections.  Since connections don’t change they better represent relationships and interactions 
that exist in reality.  Also, only the general connectedness of a network needs to be known to 
apply random connections.  Knowing how many interactions people have on average is a lot 
easier to find than knowing all interactions.  Thus the CA model avoids both assumptions, 
creating a better model in the process. 

 We validate the CA tool by comparing its output against well known SIS and SIR 
models.  We then go on to use the CA tool to show the important effects that may be masked by 
assuming random mixing.  There are definite variations that occur as a result of the underlying 
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connections in any network.  This tool takes those into effect by keeping the network 
connections static throughout one simulation period and allowing batch runs so that multiple 
variations of network connections may be tested under similar conditions and then the results 
averaged.  In the end, this research project successfully concludes with the creation of new 
method to modeling diffusion through a network and justifying its existence with a critique on 
existing models. 
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 MODELING OF DIFFUSION THROUGH A NETWORK: A NEW APPROACH USING 
CELLULAR AUTOMATA AND NETWORK SCIENCE TECHNIQUES 

 
I.  INTRODUCTION  

 
 

Network science is an emerging field of study that uses the scientific method to examine 

an array of networks to derive a series of principles or theorems to describe the behavior of those 

networks.  The U.S. Army recently became interested in network science when the idea of 

network-centric warfare came about in the late 1990s with the publishing of the book titled the 

same (Alberts, Garstka, & Stein, 1999).  Leading the way in the creation of network-centric 

operations, the U.S. Army has created a Network Science Center at our very own U.S. Military 

Academy.  Traditionally the focus of network-based operations has been on friendly 

communication networks and information distribution on the battlefield.  This idea stems from 

the theory that information superiority, just like other more familiar terms (air superiority, fire 

superiority), is the next step the U.S. Military must work to accomplish in order to dominate in 

the information age. 

Through network science the U.S. Army hopes to develop methods to increase the 

accuracy, timeliness, and relevance of information that it uses to win the nation’s wars.  

However, network science can also be used to better understand enemy forces.  For instance, 

knowing how the communication networks of the enemy work allows one to target only the most 

critical components of that network to bring down the whole system.  Also, knowing how the 

enemy communicates provides a tool that can be used to predict the enemy response.  So not 

only does the study of networks afford the U.S. Army greater information sharing abilities, it 

could also give a better understanding of enemy operations and communications systems. 
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Figure 1 Superior Information Position (From Alberts, Garstka, & Stein, 1999) 

 Beyond the specific military applications of networks, there are several other possible 

uses.  Like the spread of information, modeling the spread of disease through a population is 

uniquely suited to study by network science.  Modeling the flow of products throughout a 

consumer network or the delegation throughout a corporate network are also possible areas 

where network science can offer help.  In the information age there are now so many different 

networks that network study can be applied to all kinds of fields.  So while still in its infancy, 

network science holds the promise of finding unique solutions to complex problems in an 

increasingly connected world. 

 Scientists and mathematicians have been trying for centuries to correctly model behavior 

of groups of people.  Behavior can vary from something as simple as what happens if one 

member of the group leaves the group to something as complicated as the effect of a natural 

disaster on a group’s cohesion.  This paper focuses on the behavior associated with diffusion or 

spread throughout a group.  Exactly what is spreading throughout the group is not defined; it 

could be a disease or it could be a piece of information.  Currently there are several mathematical 
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models that predict how diffusion through a group occurs.  Some have been used to predict 

infection rates in large populations; others have been used to pinpoint individuals that act as key 

information spreaders such as a local gossiper.  The goal of this paper is to offer an alternative 

method of modeling this diffusion and provide some insight into why this alternative might be 

more accurate. 

 Many of the current models of diffusion assume random mixing.  This would be 

equivalent to putting a drop of dye in a glass of water and stirring it.  The dye will diffuse 

throughout the entire glass through random movement of the water molecules.  Another large 

segment of these models assume a detailed knowledge of the underlying network connections.  

For instance an airline company might know exactly which cities had flights connecting them 

and so would have a detailed understanding of how people diffused around the globe by air.  

Neither of these two assumptions, random mixing and knowledge of network connections, is 

always valid.  Consider the example of the spread of a disease through a city.  To assume that 

any two individuals in the city have equal chance of spreading the disease as any other two 

individuals would be an incorrect assumption.  Certainly people that go to the same office, the 

same grocery store, or even live in the same house are more likely to spread disease than two 

people who do not share any such spaces.  To assume detailed knowledge of the network of 

interactions would also likely be an incorrect assumption.  Knowing who interacts with whom is 

possible in a small office or school class room, but for an entire city the possible number of 

connections grows too large. 

 The tool presented in this paper uses a cellular automata (CA) based model to avoid both 

invalid assumptions.  Instead of assuming random mixing, the CA model assumes random 

connections.  Since connections don’t change they better represent relationships and interactions 
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that exist in reality.  Also only the general connectedness of a network needs to be known to 

apply random connections.  Knowing how many interactions people have on average is a lot 

easier to find than knowing all interactions.  Thus the CA model avoids both assumptions, 

creating a better model in the process. 

We validate the CA tool by comparing its output against well known SIS and SIR 

models.  We then go on to use the CA tool to show the important effects that may be masked by 

assuming random mixing.  There are definite variations that occur as a result of the underlying 

connections in any network.  This tool takes those into effect by keeping the network 

connections static throughout one simulation period and allowing batch runs so that multiple 

variations of network connections may be tested under similar conditions and then the results 

averaged.  In the end, this research project successfully concludes with the creation of new 

method to modeling diffusion through a network and justifying its existence with a critique on 

existing models. 
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MODELING OF DIFFUSION THROUGH A NETWORK: A NEW APPROACH USING 
CELLULAR AUTOMATA AND NETWORK SCIENCE TECHNIQUES 

 
II. BACKGROUND 

 

A. Graph theory 

Mathematics has provided a number of different models to describe diffusion through a 

network.  Since networks are generally constructed either to model or facilitate diffusion, being 

able to describe this diffusion in a numerical expression is of great importance.  We begin with a 

review of some basic ideas in graph theory.  

A graph is a collection of vertices (or nodes) and edges that connect pairs of vertices 

known as neighbors.  A graph may be directed, meaning flow from one vertex to another is 

restricted to only one direction, or it may be undirected, in which case flow is unrestricted in 

direction between nodes.  Nodes have a number of attributes that conveniently describe their 

place within a graph and relative number of neighbors.  The degree of a node is equal to the 

number of neighbors that node has.  Nodes also typically have some kind of state that depends 

on the type of network being modeled.  A disease-tracking graph may have nodes with states 

such as: infected, immune, not infected, recovered from infection.  The undirected graph in 

Figure 2 has four nodes, with node 1 having a degree of three while node 2 has a degree of one. 

 

 

 

Figure 2 Graph 

1 

2 
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B. Existing Diffusion Models 

1. Threshold v. Independent Cascade Models1

Two general types of diffusion models are the threshold and independent cascade 

models.  These models are named for the conditions by which a node changes state.  The first 

model gives each node its own threshold which must be reached before it will change state.  The 

independent cascade model gives each node a single chance to change the state of neighboring 

nodes; each node is acting independently of the others. 

 

In the threshold model each neighbor may be given a certain weight with which it will 

affect its neighbor(s).  For a particular node to change state the combined weight of that node’s 

neighbors acting on it must meet the threshold, as specified in Inequality 1. 

� 𝑏𝑏𝑣𝑣,𝑤𝑤 ≤ 𝜃𝜃𝑤𝑤
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  𝑜𝑜𝑜𝑜  𝑤𝑤

 

Inequality 1 Threshold Weights (From Kempe, Kleinberg, & Tardos, 2003) 

In this summation, the weights (b) of the neighbors (v) of w are added together.  If they are less 

than or equal to the threshold 𝜃𝜃 of the node w then the node will not change state.  This 

computation is done for each node at each time step (t). 

 The second type of model, the independent cascade model, simply gives each of the 

neighbors of v some independent probability of affecting the state of v.  For example if a 

neighbor of w called v becomes active at time t, it is given a single chance to activate w with a 

random probability p(v).  If v succeeds, then w becomes active at time t + 1.  If there are multiple 

                                                 
1 Kempe, Kleinberg, & Tardos, 2003, 138 
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neighbors of w that become active at time t then they are all given a chance to activate w in a 

random order. 

2. Bass Model2

One of the earlier models of diffusion is known as the Bass Model (Jackson, 2008).  This 

model does not involve network science but is a commonly used and well known model of 

diffusion.  The model depends on two parameters: the first is the rate (p) at which nodes 

spontaneously become active and the second is the rate (q) at which nodes become active due to 

the activity of neighboring nodes.  For simplicity it can be assumed that there are only two states, 

active and inactive.  The model predicts F(t), the number of active nodes at time t by the 

following equation: 

𝐹𝐹(𝑡𝑡) =
1 − 𝑒𝑒−(𝑝𝑝+𝑞𝑞)𝑡𝑡

1 + 𝑞𝑞
𝑝𝑝 𝑒𝑒

−(𝑝𝑝+𝑞𝑞)𝑡𝑡
 

 

Equation 2 Bass Model (From Jackson, 2008) 

In this equation, p is the rate of spontaneous activity and q is the rate of activation due to 

surrounding activity.  Using this model the process of calculating an approximation for the total 

number of active nodes at any time is quite straight forward. 

3. SIS & SIR Model3

Another diffusion model known as the SIS model (Susceptible, Infected, and Susceptible) 

is more commonly associated with modeling the spread of disease.  This model is based on a 

 

                                                 
2 Jackson, 2008, 187 
3 Ibid., 196. 
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node being either infected or not infected but susceptible to further infection.  This model differs 

from the SIR model (Susceptible, Infected, and Recovered) in that the SIR model incorporates a 

state in which a node is no longer susceptible to infection either through immunity or death.  

Important to both of these models is the fact that random mixing of individuals is assumed, so 

that there are no predefined pathways for disease spread.  The SIS model is the simpler of the 

two since all nodes return to their original state after infection.  Its measure of the average 

infection rate is rather simple to calculate and depends on two factors.  The first is the degree 

distribution P, and the second is the fraction of individuals of degree d who are infected, ρ(d).  

Then, the average infection rate of the population is 

𝜌𝜌 = ∑ 𝑃𝑃(𝑑𝑑)𝜌𝜌(𝑑𝑑)𝑑𝑑=0,1,2… . 

Equation 3 SIS Model (From Jackson, 2008) 

The SIR model, of which the 

Equation 4 SIR Equations (From Weisstein) 

Kermack-McKendrick is a common type, is a little more 

complex.  It consists of a system of nonlinear ordinary differential equations, one for each state a 

node could be in: S (susceptible), I (infected/infectious), and R (removed) 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑏𝑏𝑏𝑏(𝑡𝑡) − 𝑣𝑣𝑣𝑣(𝑡𝑡)𝑆𝑆(𝑡𝑡) 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑣𝑣(𝑡𝑡)𝑆𝑆(𝑡𝑡) − 𝑐𝑐𝑐𝑐(𝑡𝑡) 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑐𝑐𝑐𝑐(𝑡𝑡) 

where v is the infection rate, b is the birth rate, and c is the immunity rate.  The behavior of this 

model depends upon the ratio of the initially infected (S) times the infection rate (β) to the 

recovery rate (γ), 
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𝑅𝑅0 = 𝛽𝛽𝛽𝛽
𝛾𝛾

. 

Equation 5 SIR Ratio (From Weisstein) 

If this ratio is greater than 1, then each person who is infected will infect more than one other 

person and thus the disease will spread.  If it is less than 1, then the disease will die out quickly. 

 

C. Cellular Automata 
 

While the concept of cellular automata has no immediate relationship with diffusion 

through a network it does have some specific applications to our particular objectives.  A cellular 

automata (CA) consists of a collection of cells that change over discrete time intervals according 

to a system of rules.  These rules are applied at each time step to decide the state at the next time 

step.  Each time step is known as a generation.  Often changes in the cells are depicted in the 

form of coloration, in its simplest form this may be a change from black to white or vice-a-versa.  

Cells may be in a single line representing a one-dimensional environment, or they may be placed 

in a grid to simulate a two-dimensional situation.  There are no universal generic rules for 

cellular automata, but often particular rules are applied in a manner similar to threshold models 

described in the section 1.  The state of a cell in a future generation often depends upon the cell’s 

current state and the count of states of neighboring cells.  In CA, neighboring cells are generally 

defined as those cells directly adjacent to the cell in question.  For instance in a two state system 

a cell may enter state 2 in the next generation if in the previous generation the cell was in state 1 

and had two neighbors in state 2. 
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Figure 3 Cellular Automata 

 
 
D. Objective and Research Question 

 

The objective of this paper is to describe the design and implementation of a new method 

for modeling spread of information.  This method will seek to combine elements of both network 

graphs and geographically-based models, building upon the theory of cellular automata.  CA is 

useful because the underlying network structure that connects cells and the time step logic 

enables easy modeling of large or complex situations. 

 We use a custom-made form of CA, and interlace some ideas from network graphs such 

as “wormhole” links that connect cells that are not adjacent.  We also introduce some degree of 

randomness into the system using probability distributions to determine whether information will 

flow from a cell to its neighbor. 

 We verify the validity of the model by comparing it to current models already mentioned 

in the above before using it to draw other conclusions about the diffusion in a network. The final 

objective is the formulation of conclusions about diffusion through networks, which can be used 

to evaluate current models with data generated by the CA tool. 

 

1 2 2 2 2 2 

Gen: k Gen: k+1 
Cell in 

question 
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E. Justification of Study 

In the Army, or indeed in any organization, communication is an aspect of leadership that 

is highly valued.  Much research has been done and money invested into the study of information 

flow and communication between individuals and within a large group.  Especially in the realm 

of network science, the study of entities interacting as part of a larger group has unearthed 

several useful models or methods for information spread.  While these models often produce 

useful and interesting results, they can be difficult to construct based on incomplete knowledge 

of the edges in the network graph.  Strictly geography-based models used for modeling spread 

simply by proximity of the entities to one another fail to account for long-distance 

communications that allow some entities to share information at a distance. 

Outside of network science there are many models that don’t take into account any 

underlying network when modeling diffusion.  It is one of the goals of this paper to underscore 

the importance of recognizing the underlying graph of a network or at the very least taking into 

account some basic properties of that graph.  One of the more visually appealing as well as easily 

implemented methods for modeling spread geographically is through the use of CA.  It is for 

these reasons that a combination of CA and network theory will create a unique and useful model 

of diffusion. 
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MODELING OF DIFFUSION THROUGH A NETWORK: A NEW APPROACH USING 
CELLULAR AUTOMATA AND NETWORK SCIENCE TECHNIQUES 

 
III. MODELING TOOLS 

 

A major goal of this research project and one that took a vast amount of the time 

available to complete it was the creation of a modeling tool from which to gather data.  The 

initial idea was to create a CA-based computer simulator that was customizable and easy to use.  

Customization was easy to accomplish since the tool was built from the ground up and the ease 

of use came mostly out of the GUI interface.  Once the CA tool had been created and modified to 

an acceptable point of operation, we created another Excel-based tool.  This experimental tool 

was based off of the recently constructed CA tool but instead of discrete states of 0 and 1 in CA, 

its computations were based on probabilities. 

 

A. Cellular Automata Tool 

The CA tool, pictured in Figure 4, is designed to be easy to use and highly customizable.  

It allows the user to modify the  size of the CA universe and the number of generations to run.  It 

can run batch runs of various scenarios to allow easy computation of averages.  The CA rules can 

be modified to model different scenarios such as SIS or SIR scenarios.  Even the connections 

between cells can be modified using the available adjacency matrix or the default settings of left 

and right adjacent neighbor connections may be used. 
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Figure 4 Cellular Automata Tool 

 
In the visual window each successive generation is displayed in the row below.  Likewise 

the state count window displays the total number of cells in each state in each generation by row.  

In the adjacency table, filled in squares represent connections between cells in the visual window 

and checking/unchecking the symmetric box can enforce symmetry in the adjacency matrix thus 

making either a directed or undirected graph.  Depending on the scenario, the adjacency table 

may be either in a default configuration with left and right neighbor connections only, or may be 

populated with a random fill of connections according to the level of connectedness desired.  

Also, the default configuration may have additional random connections according to the desired 

level of connectedness.  The entire tool was built from scratch within Java, allowing for 

complete customization. 
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B. Experimental Excel Tool 

The Excel model was created to explore specific questions inspired by the CA tool. Excel 

is especially well-suited for CA modeling because it can easily be used to perform repeated 

operations over a finite and discrete amount of time.  This model focused on probabilities of 

infection rather than discrete cell states of infected or uninfected, in order to examine the 

approximate long-term behavior of the system.  Figure 5 below depicts an example simulation of 

a population of ten individuals.  The initial infection rate was 20% and the chance of 

transmission and recovery were 20% and 30% respectively.  The adjacency matrix in the upper 

right corner of the figure operates similarly to the matrix in the CA tool.  The colors of the 

columns indicate their infection rate with red being more likely to become infected and green 

less likely. 

 
Figure 5 Excel Model of Infection 
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The entire model was built using formulas so that the initial infection rate, recovery and 

transmission rates, as well as the percent connectedness of the network could easily be changed 

to affect the whole model.  There is no batch run ability for this model so computing overall 

averages for a given scenario is not possible.  There were some interesting results, however, 

which will be examined in the findings section of this paper. 
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MODELING OF DIFFUSION THROUGH A NETWORK: A NEW APPROACH USING 
CELLULAR AUTOMATA AND NETWORK SCIENCE TECHNIQUES 

 
IV. Results 

 
 
A. Validation 

We begin our discussion of results with a validation of the tool being used to model 

diffusion.  We will use the SIS and SIR models described above and compare the output to data 

from computer simulations using our CA tool.  This simplest of the two models (SIS) can 

generally be described by the figure below: 

 
Figure 6 Simulation and Solutions to SIS Model (From Ediger, 2010) 

 

This figure depicts a simulation average, a numerical solution, and an analytical solution to the 

SIS model measuring the number of infected nodes over time.  As you can see, the curve exhibits 

a logistical pattern.  Similar results were obtained from an SIS model simulation using our 

computer based CA:  
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Figure 7 CA Simulation of SIS System 

 

This simulation was created using two state cells (0 & 1) with neighboring cell connections and 

additional random connections on the order of 0.5% of the total possible connections and a 

universe of 100 cells.  The simulation was run for 50 generations but is cut off in this graph as 

there was no change in cell count after 8 generations.  SIS rules were in place that allowed an 

infected cell to transfer its infection to any connected cells and then become susceptible in 

subsequent time steps. 

 Both the well known SIS model and the simulation run using our CA tool give similar 

logistical patterns of infection growth rates.  These curves correctly model an SIS sytem as the 

infection starts off in exponential growth initially and then slowly levels off as the infection rate 

nears the carrying capacity of the disease.  The similarity of these two curves indicates that our 

CA tool is a valid method of modeling diseases in an SIS system. 
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 Next, the tool was validated by modeling a more complicated model, the SIR model.  

Curves for a SIR system as described in the previous section generally appear similar to the 

curve below: 

 
Figure 8 Deterministic Solution of SIR Model (From Chestnut, 2010) 

This image was generated from a deterministic solution to the three differential equations that 

make up the SIR model using MATLAB, starting with 1 infected individual and over 700 

susceptible individuals. Below are the results of an SIR simulation using the CA tool: 

 

Figure 9 CA Simulation of SIR System 
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This simulation was created using three states of cells with neighboring cell connections and a 

universe of 50 cells.  SIR rules were in place that allowed a susceptible cell to become infected 

by any neighboring cell, remaining infected for a generation, and then transforming into a 

resistant cell for the remainder of the time period. 

 The deterministic solution and the CA simulation are similar in appearance.  Both figures 

correctly model the initial rapid increase in infections resulting decrease in susceptibility and 

follow on increase in resistance to infection.  The infection rate slows and drops off as the 

number of resistant individuals/cells becomes greater than the amount of susceptible ones.  Both 

the infection rate and susceptible rate approach zero as all individuals/cells become resistant to 

the infection. 

 One important aspect to note about these two models is that they both are based on the 

assumption of random mixing.  CA does not allow for random mixing to occur.  However, the 

CA universe is set at the beginning of a run and does not change throughout the period of a 

simulation.  This is an important distinction to make as random mixing cannot always be 

assumed.  In reality it cannot be expected that an individual will spread an infection to an area to 

which that individual has never been to.  Disease is spread along channels of contacts and so the 

spread of a disease is best modeled using an underlying graph of the connections between 

people. 
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B. Findings 

Spread of Information through a Community 

Obviously it is difficult if not impossible to know the underlying graph of a large network 

especially if the nodes of that network are as uncontrollable as people can be.  It is unrealistic to 

expect a modeler to know all of the connections of such a graph but one could know the average 

number of connections between nodes.  The CA tool used in this paper allows for the 

customization of the connectedness of the graph by randomly apportioning a percentage of the 

total possible connections.  This is not the same as random mixing: once the simulation begins 

the connections do not change.  Depending on the real life situation being modeled this may or 

may not be a more accurate picture of what is being modeled. 

One of the situations the CA tool was used to model that showed the importance of the 

topology, was in the modeling of information flow from person to person through a community.  

Using a few assumptions to create a very simple scenario, we modeled the flow of information 

with a 100% chance of transmittance between 100 connected individuals.  We then varied the 

number of connections and the distribution of those connections to examine how the topology of 

a network affected the diffusion. 
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Figure 10 Information Flow through a Community Neighbors Only 

 
The very uninteresting figure above shows the flow of information from one individual 

through an entire community where each individual may transfer information to their two 

immediately adjacent neighboring individuals.  This would best be envisioned as a circle of 100 

family houses where each family only communicated to the families directly to the right and left 

of their own house.  This is not a very realistic model but it provides a base line to compare 

things to. 

 The next simulation eliminated the rigid left and right neighborhood structure and 

replaced it with a random assortment of connections that consisted of 2% of the total possible 

number of connections amongst the individual families.  Since there are 100 families there are 

10,000 possible connections, thus 2% of the possible connections represent 200 connections 

which is the same number of connections in the simulation just prior with left and right 

neighbors.  In this simulation the number of connections is the same as the one before but the 
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placement of those connections is not.  The average result of this model of information flow 

through a community (for 500 runs) is depicted in Figure 9 below. 

 

Figure 11 Information Flow through a Community 2% Connectedness 

 
In this figure one does not see the same linear growth that occurred in the scenario 

depicted by Figure 8.  Additionally notice that the number of informed families does not nor will 

it reach 100% of the total.  This means that the entire community does not always receive the 

information that is being passed along.  Sometimes there are families that are isolated from the 

rest of the community and thus cannot receive the information from anyone else in the 

community.  Also the time scale is much shorter in this scenario.  Whereas in the previous 

scenario it took 50-51 generations for the entire community to become informed, in this scenario 

it took only eight generations for almost all of the community to become informed.  Given these 

results, it appears that randomizing the connections between families increased the rate of 

transference but reduced the possibility of the entire community becoming informed. 
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 Reducing the number of connections to 1% of the total possible connections significantly 

reduced the chance of the entire community from becoming informed but did not increase the 

rate at which transference occurred.  In Figure 12 below the results of an averaged 500 batch 

runs of a community randomly connected with 1% of the total possible connections are depicted. 

 

Figure 12 Information Flow through a Community 1% Connectedness 

 
The smaller number of connections increased the likelihood that some families would be entirely 

disconnected from the group of the community that was connected to the one informed family.  

The rate at which the community reached maximum information saturation occurred after 9 

generations, which was not really different from the rate at which the 2% connectedness 

simulation reached saturation. 

 

 

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ce
lls

Generations

Information Flow through a Community
1% Connectedness

Uninformed

Informed



 
 

26 

Disease Transmission and Expected Infection Rates 

Another scenario tested was a threshold based model that was a variant of the SIS model.  

Like the SIS model, each cell had two states, infected and susceptible, but there were also 

transmission and recovery rates associated with each transformation of cell state.  We initially 

choose a transmission rate of 35% and a recovery rate of 50% because they gave significant 

variability in the results.  Figure 13 below depicts simulations using left and right neighbor 

connections, and additional 0.0%, 0.50%, 1.0% or 1.50% connections determined at random.  

Each simulation is given its own color with the number of infected individuals starting at 10% 

and the number susceptible at 90% with a total population of 100 cells. 

  

Figure 13 35% Transmission Rate & Various Connectedness 

 
 From these results it appears that higher connectedness leads to higher rates of population 

infection rates.  What is surprising by these results is how big of a difference the added 
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connections made in the infection rates.  With just neighbor connections (0.0%) the infection 

died off fairly quickly since recovery was more likely than transmission.  But added connections 

quickly overcame the difference in transmission and recovery rates allowing the infection to 

have a long term presence in the population.  Traditional models predict that with random mixing 

a disease will die off if it has a significantly smaller transmission rate compared to recovery rate, 

see equation 4 (SIR Ratio).  But the CA simulation shows that the infection rate is highly 

dependent upon the connectedness of the network; in fact, a disease may still persist in a 

population with a transmission rate smaller than a recovery rate. 

 

Figure 14 50% Transmission Rate & Various Connectedness 

 
 When reversed, transmission rate of 50% and recovery rate of 35%, the expected 

persistant infection rates emerge even with just left and right neighbor connections.  The 

additional random connections pushes the infection rate higher than 50%.  These two scenarios 
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show the immense effect that the connectedness of a network can have on the spread of a 

pathogen through a community. 

Excel Model Examples 

Figure 5 (below again for reference) of the Excel Model of Infection showed clearly that 

some individuals were more likely to become infected than others, even when all individuals in a 

population initial have the same likelihood of infection. 

 

Clearly from this figure it is apparent that some individuals (9 & 10) are far more likely 

to become infected than others (4 & 1).  In fact, you can see in the figure below that the 

distribution of infection likelihood is dramatically different for almost every member of this 

population.  The large ballooning of the infection rates for various cells shows exactly how much 

the underlying connections can affect individual infection rates even with the same starting 

infection rate.  
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Figure 15 Individual Infection Rates 

 

Figure 16 Average Infection Rates 
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 The graph of the overall average infection rate shows none of the variability that Figure 

16 above shows.  While being able to compute average infection rates for a population may be 

useful for some statistical inferences, it really serves only to mask the large amount of variability 

that exists in the population.  This variability is important as we have seen and can result in 

second and third order effects that would not be noticed with vast amounts of averaging. 
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MODELING OF DIFFUSION THROUGH A NETWORK: A NEW APPROACH USING 
CELLULAR AUTOMATA AND NETWORK SCIENCE TECHNIQUES 

 
V. CONCLUSION AND RECOMMENDATIONS 

 

 From the information flow scenario and disease transmission scenario we can glean two 

important lessons.  The first is that the distribution of the connections in a network can have a 

substantial impact on the diffusion of something, say information, through a network.  The 

second is that the connectedness of a network may also have a large effect on the spread of 

something, say a disease, through a network.  These two facts highlight the importance of the 

underlying graph that represents a network when modeling movement of an impulse through that 

network.  This impulse may be a message or it may be a virus but it is clear from these 

experiments that random mixing is not always the best assumption. 

 There are certainly times when random mixing is a good assumption to make.  Within a 

house for example it could reasonably be expected that individuals would moving about the 

house fairly often and interacting with all individuals in the house at some point or another.  This 

would not be true on a national scale however because you would not expect a person on one 

side of the country to interact often with individuals on another side of the country.  In such a 

situation it would be best modeled using a simulation that took into account something about the 

underlying distribution of connections between people.  This paper should serve to illustrate the 

idea that random mixing models may not work well for many situations.  Additionally this paper 

presents an alternate way to simulate spread throughout a network if something about the 

underlying network graph is known. 
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A. Recommendations for further study 
  

 There are many useful tools that can be derived from further research into this problem of 

modeling diffusion.  First, in order to refine the current modeling using CA, it would be useful to 

model real life networks or at least random networks that are similar to real ones.  There is 

currently a lot of research in the area of pseudo-random graph generation and this project would 

be more complete if it incorporated some of the findings of that research.  The random networks 

that were generated in this project are completely random and do not properly simulate the social 

networks one might find in a community of people.  For example, random small-world networks 

would better model a social network but that would also require substantially more coding and 

was not able to be incorporated into this project.   

A second recommendation is further research into the development of theoretical models 

of diffusions.  This paper offers a simulation tool which can model diffusion but it does not lend 

itself nicely to strictly theoretical mathematical models.  A single formula or series of equations 

to determine long term infection rates would be considerably more useful than a computer 

simulation.  Additional research into this project area would first focus on obtaining a theoretical 

model for diffusion. 

 Another interesting idea to study in the future is the pinpointing of changes in behavior 

based on topology.  It is clear in this paper that certain changes in topology do have an effect on 

diffusion.  Finding out exactly which changes cause the change is another area yet to be 

researched.  It would be interesting and useful to know exactly where the tipping points are that 

cause a diffusion model to exhibit such different results.  Knowing the tipping points would 

indicate what kind of diffusion behavior could be expected from the onset when examining a 

particular network configuration. 
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